5.	(a)	(i)	Give a simple description of the structure of a capacitor. [2]				
		(ii)	Define the <i>capacitance</i> of a capacitor. [1]				
	<i>(b)</i>	An experimental torch has been made using a 5·0 F capacitor in place of a battery. Before the torch is needed the capacitor is charged to a potential difference of 4·0 V. When light is required a switch is pressed, connecting a light-emitting diode (LED) across the capacitor.					
		(i)	The LED gives out a useful intensity of light until the potential difference has fallen to 3·2 V. Calculate the energy lost by the capacitor during this period. [3]				
		(ii)	The mean power input to the LED during this period is 40 mW. Calculate for how long the LED would give out light of a useful intensity. [2]				
		(iii)	If two 5·0 F capacitors were available for use in the torch, explain whether it would be better to connect them in series or parallel. [The same charging potential difference of 4·0 V is available.]				

3. Two stars and point P form an equilateral triangle of side 120×10^9 m.

- (a) Draw **two** arrows at P to represent the directions of the gravitational fields at P due to each of the two stars.
- (b) Explain why the horizontal component of the resultant gravitational field strength at P due to the two stars is zero. [2]

(c) Calculate the resultant gravitational field at **P** due to the two stars. [3]

- (d) Mark with an X in the above diagram the point where the resultant gravitational field strength is zero. [1]
- (e) Calculate the gravitational potential at P. [3]

6. A large current of 213 A is passed through a thick copper rod of length $5.50 \,\mathrm{m}$ and diameter $20.0 \,\mathrm{cm}$. The resistivity of copper is $1.77 \times 10^{-8} \,\Omega \,\mathrm{m}$.

 $\begin{array}{c}
5.50 \,\mathrm{m} \\
\hline
20.0 \,\mathrm{cm}
\end{array}$ $I = 213 \,\mathrm{A}$

- (a) Show that the resistance of the copper rod is $3.10 \,\mu\,\Omega$. [3]
- (b) Show that the power dissipated in the copper rod is around 0·14 W. [2]
- (c) The specific heat capacity of copper is $387 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{kg}^{-1}$ and the mass of the rod is $1.50 \times 10^3 \,\mathrm{kg}$. Assuming that no heat is lost, show that the average rate at which the temperature of the copper rod rises is around $2.4 \times 10^{-7} \,\mathrm{K}\,\mathrm{s}^{-1}$. [3]

(d) Would it be safe to touch this copper rod? Explain your reasoning briefly. [2]

It would be inappropriate to measure this large current (213A) with an ammeter in series therefore a different method is employed. The magnetic field due to the current in the rod is found using a Hall probe. This value is then used to calculate the current in the rod.

(e)	Explain briefly how the Hall voltage arises in a Hall probe. A diagram of a Ha and voltmeter is provided. You will need to connect the voltmeter to the Ha correctly.	all probe all probe [5]
	—(v)–
	\overline{I}	
The r is the	magnetic flux density due to the current in the copper rod is given by $B=\frac{\mu_0 I}{2\pi a}$, the distance from the centre of the rod.	where a
<i>(f)</i>	You are to measure the magnetic flux density due to the copper rod with a Ha	ll probe.

Where would you place the probe and how would it be orientated in order to obtain a maximum reading of the Hall voltage? [2]

(g) A calibration graph for the Hall probe used is shown below. The Hall voltage when the maximum reading [corresponding to part (f)] is obtained is 47 mV. Use this value to calculate the current in the copper rod.

[Hint: Assume that the size of the Hall probe is negligible] [3]

(c) Below is a simplified diagram of a proton synchroton.

B-field out of paper

+

Source

- (i) Sketch on the diagram the path of a proton including an arrow for direction. [2]
- (ii) On the diagram, mark with a cross a point where the proton will be accelerated. [1]
- (iii) How can the acceleration of the proton be increased? [1]
- (iv) As the proton's speed is increased its path remains constant. How is this achieved? [1]
- (d) (i) What is an electron's final speed after it is accelerated from rest through a potential difference of 300 kV? (Note that your answer should be greater than the speed of light).[3]

(ii) The result obtained in (d)(i) is not valid because, as the electron approaches the speed of light, Einstein's theories must be applied leading to a lower final speed. Explain whether the same difficulty would be encountered when accelerating protons through the same potential difference? [3]

U4HENW10

MEDICAL PHYSICS

- a) State the principles of magnetic resonance with reference to precession nuclei, resonance and relaxation time, and to apply the equation $f = 42.6 \times 10^6$ B for the Lamor frequency [10]
- b) State the advantages and disadvantages of ultrasound imaging, X-ray imaging and MRI in examining internal structures [10]